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ABSTRACT 

We derive bound states of quarks and gluons in a two-dimensional 

model with Z(3) symmetry. The discrete symmetry imposes an 

inseparability theorem for the quark fields that satisfy the field 

equations. We calculate the masses of the ground state, resonances, 

colored states and glueballs. The various properties as size, 

formfactor and mass distributions are analyzed. The phenomenological 

bag mass formula is reproduced in terms of the mean square extension. 
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1. INTRODUCTION 

The forces that mold the strongly interacting element,ary particles 

(hadrons) out of gluons and quarks determine the interactiqn between 

these particles themselves. 

Any theory of gluons and quarks that explains hadrons provides a 

natural foundation for the theory of nuclear physics. 

Baryons are made of colored [1,2] gluons [3] and quarks [4]. 

The basic interaction between them is the color exchange force 

quantitatively described by Yang-Mills type field theories [5,6]. 

Nuclear forces conventionally are described by the exchange of 

mesons [7]. The number of mesons available is sufficiently large to 

provide enough degrees of freedom to describe the complexity of nuclear 

forces. But this is only a different aspect of the dynamics between 

nucleons and there should be a direct link between the quark and gluon 

forces on one hand and nuclear forces on the other hand [8-10]. 

The mesonic picture and the quark-gluon picture might be 

equivalent, although the latter one is the more natural. There is also 

more confidence in the meson picture as mesons one observed directly, 

whereas the quarks are observed indirectly. The economy of the mesonic 

description becomes more complicated as the nucleons get closer, 

whereas the complexity of the quark-gluon descriptions ,should be 

independent of the r~lative distance of the nucleons. Ther,efore from a 

fundamental point of view all nuclear physics should derive from the 

quark-gluon and gluon-gluon interaction. 
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I will present a model of composite particles made out of 11 gluons 11 

and 11 quarks, 11 that features quark confinement [11] and derives manybody 

forces between these particles, that will cluster to large ensembles of 

particles. 

The results are presented in three papers according to the logical 

subdivision of the subject: 

I. The structure of a single particle 

II. Two-particle interactions 

III. Formation of nuclei,many-pa'rticle interactions'. 

The assumptions of the model are the following: 

1. Quarks and gluons are described by classical fields. 

2. The internal symmetry in color space is Z(3) the group of 

cyclic discrete rotations. 

3. The gluons are scalar fields. The 11free 11 gluons have a 

polynomial self-interaction. 

Then exact solutions of the model are found under the following 

simplifying conditions: 

4~ Use of a two dimensional configuration space R2 one time 

dimension t and one space dimension x with the metric 

g~v = {g00, g11 ) = (1,-1), ~,v = 0,1. 

5. Partial decoupling of the field equations, such that the 

gluons determine the motion of the quarks but there is no 

feedback from the quarks on the gluons. 
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Some of the results that will be presented in the series of three 

papers are.the following: 

1. Confinement of the quarks to bound states. 

-2. Mass spectrum of color neutral states, resonances, colored 

states and glueballs. 

3. Phenomenological bag type formula for the mass of the composite 

system. 

4. Two body potential between two composite particles with a 

shallow attraction near the to~ching point of the particles and 

a hard core repulsion at short distances. The poteDtial 

between colored states or glueballs is purely att~active. 

5. The many body forces become more attractive with increasing 

number of particles, and move the particles .closer than two 

body forces alone would predict. 

6. Saturation of nuclear force. 

7. Constant density in the center of nuclei. 

8. Equation of state of nuclear matter. 

In Chap. 2, part I, we introduce the classical fields as a 

dynamical degrees of freedom and define the model by giving its 

Langrangian in three different representations, discuss the symmetry 

and field equations. 

In Chap. 3 we modify the problem by decoupling the gluons from the 

quarks but having the quarks still move in the field of the gluon •. In 

this case we may use a previously found solution of the gluon equations 

[12]. 
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In Chap. 4 then the motion of the quarks in the gluon field is 

solved and the solution interpreted as permanent confinement, color 

singlet, vanishing outside, linear rising potential. 

In the following chapters the properties of composite particles are 

analyzed. The energy density Chap. 5, the average extension (Chap. 6), 

the form factor (Chap. 7) and the mass formula (Chap. 8). 

In Chap. 9 the question ,of the mass spectrum is addressed. Two 

excitation levels are calculated by an approximation of the nonlinear 

gluon equations. The energy distribution (time dependence) of the 

resonance is given. 

In Chap. 10 the properties of colored states (states deficient in 

one quark) and glueballs (~tates deficient in both quarks) are 

discussed. 

In the last Chap. 11, the results are summarized and conclusions 

drawn. 
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2. A Z(3) SYMMETRIC FIELD THEORY MODEL 

The Langrangian of the model contains two scalar fields ~ 1 (t,x), 

~2 (t,x) that we call gluon fields and two spinor fields ~1 (t,x), 

~2 (t,x) that we call quark fields. 

+-+ - +-7-

+ i ~ 1 Y 1l a 1l ~1 - m ~1 ~1 + i ~2 Y 1l a 1l ~2 - m ~2 ~2 

where V is the self-interaction of the free gluon fi~ld (Fig. 1): 

The self interaction of the gluon is determined by three coupling 

constants A, v, ll· The constant y is determined such that V is 

positive definite V ~ 0. g is an independent coupling constant in 

front of the Yukawa coupling term between quarks and gluons. 

a 
ax 

Jl 

+-7- 1 + + 

all= 2 (all- all) $y ,y } = 2 g , JJ,v=0,1 t Jl V JlV 

So far the configuration space can have any dimension. 

(2-1) 

(2-3) 

(2-4) 

.. 

r.;) 
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The two components of quark fields ~1 , ~2 have the significance 

of two different colors. In a model with quarks having two colors red 

and blue, e.g., the least number of gluon fields needed to change the 

colors is two. One component of the gluon field should not change any 

color whereas the second component should. change the color either from 

red to blue or from blue to red. In the SU(2) nonablian gauge theory 

three gluon fields are used to change two colors because the gluon 

fields making the red-blue and blue-red transition are complex 

conjugates of each other. 

An alternative form of the Lagrangian (2-1) is obtained by 

introducing matrix fields for fermions 

w = (:~) ; 

-
1/1 = (~1' ~2) (2-5) 

and for the gluons 

~· = ( ¢c¢2) 
-~2-~1 = 03~1 - 0 1~2 (2-6) 

where cr1, cr2, cr3 are the Pauli matrices. 

Then the currents (2-3) become: 

(2-7) 

The·Langranian (2-1) is transformed into 
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1 2 1 4 3 2 
£ = 4 Tr(aP~) - 2 Tr [A~ -v(a3~) - p~ - y] 

(2-8) 
++ 

+ i 1/J y a 1/J- m1/J1/J - gt/J01/J 
p p 

a form that pretends to generalizations to a larger number of colors. 

The model is invariant under the transformations of the Poincare 

group and has the internal symmetries w1 ~ -1/J1, w2 ~ -1/J2 and 

most distinctive the cyclic symmetry Z(3): 

~ 1 • ~ 1 cos(gn) - ~2 sin(Gn) 

~ 2 • ~ 1 sin(gn) + ~2 cos(Gn) 

w1 • w1 cos ( Gn) - w2 sin( gn) 

1/J2 • w1 sin(gn) + w2 cos(Gn) 

~1 • ~1 cos(gn) - ~2 sin(Gn) 

~2 ~ ~1 sin(gn) + ~2 cos(Gn) 

In matrix form the same transformations are 

- - +2 
1/J ~ n 1/J R 

(2-9) 

(2-10) 

{2-11) 

( 2-;12) 

(2-13) 

(2-14) 
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with R = exp (-i ~ cr2) n = :1:1 (2-15) 

and 21f e = :3 n , n = 0,1,2 • 

R is a representation of a cyclic group of order three, and R3 = 

Identity guarantees the i nvari ance of ~~1/J. 

The discrete angle of rotation e = 21f/3 n is imposed by th~ cubic 

term in the Lagrangian. All .other terms and rotationally invariant. 

In polar coordinates ~ 1 = p cos e, ~2 = p sin e the potential 
4 3 2 V = I. p - " p cos 3e - pp -,y ( 2-16) 

is. a periodic function of e with period 21f/3. 

The Euler-Lagrange field equations are 

[] ~1 = -4J.(~i+~~)~1 + 3"(~i-~~) + 2P~1 + g(~11/J1~21jJ2) 

D ~2 = -4J.(~i+~~)~2- 6" ~1~2 + 2P~2 + g(-ijj11jJ2-ijj21jJ1) 

iyJ.tap1jJ1 - m1jJ1 = g(1jJ1~1 - 1/J2~2) 

iyJ.taJ.t1jJ2- m1/J2 = g(-1/J2~1- 1jJ1~2) 

(2-l7a) 

( 2-17b) 

(2-17c) 

(2-17d) 

In Ref. [12] we found a solution of the gluon equations in the 

absence of quarks. To make use of these solutions we consider a motion 

of the gluons independent of the quarks, but the quarks moving in the 

potential created by the gluon field. We summarize this result in the 

next section. 
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3. THE MODIFIED Z(3) PROBLEM. SOLUTION OF THE GLUONIC FIELD EQUATIONS 

Consider the following system of equations written in 1+1 dimensions: 

i(yoao-y1a1)1JJ1- m1JJ1 = g(1JJ1°1-1JJ202) 

i(roao-y1a1)1JJ2- m1)J2 = g(-1JJ201-1JJ102) 

where 

(3-1a) 

(3-1b) 

{3-1c) 

(3-1d) 

In two dimensiDn~.the kin~t~c part of the fe~mion equati6ns is giv~~ by 

the Thirring-model [13] with therepresentation of the y matrices: 

(3-2) 

and the conjugate fields 

k=1,2 • (3-3) 

The system of equations (3-1) is not even an approximation of the 

original set of equations (2-17) in two dimensions because a first 

order effect is negle~ted. This is rather a new problem. The feedback 
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of the quarks upon the gluons is neglected. But this new problem has 

the advantage to render itself to an elegant solution in closed form 

for the ~ and ~ fields. 

Time independent solutions of the gluon equations [12] are obtained 

when the coupling constants are related to each other 

2 4 3 
, y = - -3 A~ = -v~ • v v (3-4) 

The soliton solutions with asymptotic values ~1 = ~v' ~ 2 = 0 for x = + oo 

and ~ 1 = -(1/2) ~v' ~2 = (/3/2) ~v for x = -ooare Fig. (3-1): 

d is the vacuum field and '~'v 

(3-5) 

(3-6) 

The fields (3-5) satisfy the algebraic relation (straight line in field 

space) 

~1 + /3 ~2 = ~v (3-7) 

For the particular values of the coupling constants (3-4) the 

trajectory (3-7) is a geodesic line in the space of the potential 

V(~ 1 ,~ 2 ) that connects the two minima of the potential in which the 
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asymptotic values of the.fields reside. There are two more pairs of 

solutions obtained by rotations by 2~n/3 (n = 1,2) in ~~space 

and 

Next we are going to solve the quark equations with ~l and ~2 
from Eq. (3-5). ~ 1 , ~ 2 are stable soliton solutions. The action 

(3-8) 

(3-9) 

for this gluon configuration is finite and less than the action for the 

vacuum state. 

5soliton < 5vacuum = 0 

It is important that the action is finite. The sign is not 

important because the action enters the functional integrals as 

imaginary exponent in the measure exp(iS). 

There is of course a zero-field ~1 = ~2 = 0 solution of the 

{3-10) 

(3-11) 

Eqs. (3-1}, but then the gluonic part of the Lagrangian is y and the 

action is infinite. 
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.4. SOLUTION OF THE QUARK EQUATIONS OF MOTION AND QUARK CONFINEMENT 

The field equations for the quarks are: 

(4-1) 

(4-2) 

with •1 and • 2 given by Eq. (3-5). 

As a consequence of the linearity of the system of differential 

equations (4-1) and (4-2) in ~1 and ~2 and the structure of the RHS 

induced by the Z(3) symmetry the following theorem holds: 

Theorem: For massless quarks m = 0 any pair of solutions ~1 and 

~2 of the system of equations (4-1), (4-2) are related algebraically: 

where n = sign ~2 = =1 is a phase factor; cr3 is the third Pauli 

matrix. 

(4-3) 

Proof: Substitute ~2 from (4-3) into both equations (4-1) and 

(4-2). Set m = 0. We obtain: 

.Equation (4-5) multiplied from the left by incr3 is identical to 

Eq. (4-4), because a3 anticommutes with Yo and r1: 

(4-4) 

(4-5) 
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and 

The system of field equations (4-1), (4-2) reduces to a single 

field equation for ~1 

and once this is solved ~2 is calculated from Eq. (4-3). 

_( 4-6) 

(4-7) 

The algebraic connection (4-3) for the quarks actually means that 

the time and space dependence of the two quark fields are the same. 

The spinors differ by a multiplication by incr3• 

As a quick test we can set ~2 = 0 and it immediately follows from 

( 4-2), independently of ( 4-3) that ~1 must a 1 so vanish. The theorem 

is true for arbitrary functions of ~1 and ~ 2 • 

The relation (4~3) between the fields i~ the basis for confinement 

of quarks and the formation of color singlets. 

The currents (2-3) become functions of ~1 alone: 

(4-8) 
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We turn now to solve Eq. (4-7) [14]. After substituting ~1 and 

~2 we observe that the quark equation separates into two parts. The 

time dependent x-independent part of the equation 

(4-9) 

and the x-dependent part of the equation 

We assume a stationary time dependence for the quark field of the 

form: 

1/!1 ( t, X) = N U exp ( i Et - H ( x)) , H( x) ~ 0 • ( 4-11) 

The first equation (4-9) will determine the energy E and the components 

u1, u2 of the spinor U. The second equation (4-10) gives the H(x) 

function. N is a normalization coefficient that will be defined later. 

The algebraic matrix equation obtained from (4-9) is 

(4-12) 
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The determinant must vanish to give nontrivial solutions for the 

spinor •. From this condition follows the energy: 

E =% ~ lgl~v = (sign E)(sign g)~ g ~v • (4-13) 

The negative va 1 ue ~f the energy wfll be used as the binding energy 

of the quarks. g will always be the chosen to be positive g > 0. The 

negative value of the energy E means the quarks want to get into the 

bag created by the gluons. 

We fix u1 to be one, then the spinor components are: 

u2 = (sign E) (sign g) (sign l/J2) exp [i(sign l/J2) i] 
(4-14) 

The x-dependent equation (4-10) reduces to 

· fa 1)(1 ) {3 ({J + in 
- ~x H(x) \1 0 "2 = g ~ ~v X(x\ 0 

. (4-15) 

Both equations are equivalent and reduce to the ordinary differential 

equation for H(x): 

- ~x H(x) = g(sign E)(signl/i2) ~ ~v X(x) (4-16) 



17 

The integration is straightforward and gives: 

H(x) = -lgl (sign E) (sign l/J2) - 1- ln cosh(~ ~vx) • ( 4-17) 
V2A 

For positive definite H(x), that is a necessity for the normaliz-

ability of the quark currents, the product of sign functions must be 

negative: 

sign E sign l/J2 = -1 • (4-18) 

The sign of the quark coupling constant g does not influence the 

sign of H(x). 

The solutions of the quark fields are in summary: 

$1 = N CJ•xp (i Et - H(x)) 
l/J2 = (sign l/J2)icr3l/J1 

u2 =-(sign g)exp [ - i(sign E) i] 

with the energy of the quark fields: 

lg l¢v 
E = (sign E) --' 2 

(4-19) 

(4-20) 

(4-21) 

(4-22) 
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and 

H(x) = -
1- lg I ln cosh (-'f' ~v(x-x0 ) ) V2i l'2 

Instead of (4-3) we could have used ~1 = -ina3 ~2 to express 

everything in terms of ~2 • 

The two currents are time independent and proportional to each 

other: 

j 1{x) = 4N2 (sign E)(sign g)sin (~) exp (-2H(x)) 

j 2(x) = 4N2 (sign E)(sign g)cos (~) exp (-2H(x)) 

the ratio is a constant: 
' . 

We determine N the normalization constant Eq. (4-11) from the 

requirement: 

from where we obtain the square of N [15, Eq~ 3.512] 

( 
-1/2 ) 

2 ( 3>..)1/2 r} + (2>..) g 
N = 8 ~v ( ) ( -1/2 ) 

r } r (2>..) g 

where B is the beta-function. 

{4-23) 

(4-24) 

(4-25) 

(4-26) 

( 4-27) 
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N2 is adjusted in such a way that the contribution of the quarks 

to the field energy is twice the binding energy E (4-22). 

Consider a composite particle made of gluons and quarks described 

by the fields (3-5) and (4-19), (4-20). 

The confinement of quarks is described by Eq. (4-3) and (4-23): 

1.) The algebraic rel~tion (4-3) between two quark fields 

of tiifferent color makes them unseparable. One field 

goes with the other. Quarks will form a permanent 

color singlet. 

2.) The currents of the quark fields vanish exponentially 

with the distance from the center of the particle. We 

therefore have a bound state of quarks. The inverse 

power of a hyperbolic cosine function is similar to a 

gaussian function for large arguments. 

Bound and unseparable quarks are confined, and cannot be 

removed by scattering or any other mechanism. 
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5. THE COMPOSITE PARTICLE: ENERGY DENSITY 

The energy density T00 calculated from the Lagrangian contains 

the kinetic and potential gluon energy Gkin' Gpot and the kinetic 

and interaction energy of the quarks Qkin and Qint= 

T ( x) {; [ a£ rf, + ;;: a£ + _.!f. ,,, J - g £ 
00 = LJ a~ k,O ~k,O a~k,O al/Jk,O ~k,O 00 k=l k,O 

., 

where 

(5-l) 

For the fields we obtained previously in Eqs. (3-9), (4-19), (4-20) 

the kinetic and potential energy of the gluons are equal: 

(5-6) 

the kinetic energy of the quarks vanishes 

~· 
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(5-7) 

* as a consequence of 0 y1U = (1-u2u2) = 0. 

The interaction energy of the quarks is 

Qint = (sign E) 2 g N2 .r/Jv exp (-2H(x) ) 

The energy density of the composite system of gluons and quarks is 

with sign E = -1. Both the gluon and the quark energy are largest when 

x-x0 = 0, and vanish exponentially with increasing distance from the 

center x0 of the composite system. The energy distribution (5-9) is 

symmetrical around x0 • A graphical representation of Eq. (5-9) is 

shown in Fig. (5-1) and (5-2). 

None of the gluons or quarks has restmass. The entire energy of 

the particle defined by (5-9) consists of field energies. 

The mass M of the particle is the integrated field energy: 

(5-10) 
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From this mass formula, the first measurable quantity derived so far, 

•v--the vacuum field and g--the quark-gluon coupling constant emerge 

as useful parameters for the description of a particle. The coupling 

constant A may be chosen to be one. For constant mass there is only 

one free parameter 'v or g. 

In Fig. (5-2) the change of energy distribution for a sequence of 

values of g is shown for a particle with constant mass. 

The energy distribution is·a competitive effect of the positive 

gluon and negative quark energy, both have approximately the same 

bell-shape. It is possible to obtain a variety of shapes as seen in 

Fig. (5-2), from peaked (g < 4.4) to flat (g = 4.4) and distributions 

with a dip in the middle (g > 4.4). For too large g's the energy may 

become negative, these values of g are discarded. 

In the two dimensional base space R2 'v has no dimensionality 

[•vJ = L0• The fermionic field is[~]= L-1• The square root of 

A has the dimension of an energy. We choose A112 to be the unit of 

energy, and set therefore the scale for all numerical values [A] = 

L-2, ["] = [p] = [y] =[A], [g] = L-1 [e.g., A= fermC2 or A= 

cm-2 etc.]. 

On the basis of the quark energies we can again show that quarks 

will be confined to bound states. To prove this we solve the quark 

field equations (4-1), (4-2) in the gluon vacuum •1 = 'v' •2 = 0 

for plane wave states. 

.. 
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The equations are: 

The quarks in the vacuum pick up an effective mass meff = g~v· 

The plane wave solution of (5-11) is: 

1 

exp[ i(Et-px)], 

i(E-p)/g~v 

with E the energy and p the momentum of the quarks that satisfy the 

relativistic energy-momentum relation: 

(5-11) 

(5-12) 

(5-13) 

(5-14) 

Because (5-11), (5-12) are just a ·Special case of the general field 

equations the relation (4-3) between ~2 and ~1 holds. 

,The quark-gluon energy density (5-5) becomes a positive constant: 

plane-wave 
Qint 

plane wave 2 
(x) = gj 1 ~v = 4N (E-p)>O (5-14) 
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Due to the Z(3) invariance of (5-5) the interaction energy density is the 

same as (5-14) in any of the three vacuum states of the gluon field. 

Therefore a plane wave packet of quarks that is made to spread out in 

vacuum over a domain (o, ~) requires an energy proportional to the length of 

the domain: 

f .R, plane wave 
Qint 

0 
(x) dx = 4N2 (E-p)~ >0. (5-15) 

This is-equivalent to a linearly increasing potential with distance 

for plane wave quarks. 

The gluon fields are smaller at the center of the particle x=x0: 

2 2 1 
~1 (0) + ~2 (0) = 4 ~v (5-16) 

than outside of the particle: if x ~ ± oo then: 

~i + ~~ = ~~ (5-17) 

This indicates the quarks occupy a region where there is a minimum of 

color exchange and avoid the regions of vacuum with potentially inten­

sive color interaction (Fig. (3-1). 
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6. THE AVERAGE EXTENSION OF A PARTICLE 

One space-dimension is the most important in physics. In one space 

dimension the concept of extension and distance is implemented. One 

can therefore distinguish extended particles from pointlike particles 

and consider the interaction between particles as a function of their 

relative distance. Three space-dimensions add volume to the extended 

particles but nothing new to the relative distance between two 

particles. 

We define the half-length of the particle (analog of the radius) by 

the second moment of the energy distribution (T00 (x) = T00 (-x)): 

(6-1) 

Formula (6-1) is chosen in such a way as to reproduce for a box-like 

energy distribution of height h ranging in the interval x E (-s,s) the 

correct length 2R = 2s. 

Since the gluons are decoupled from the quarks we consider the 

length Rb of the gluon distribution (gluon bag) separately 

( 

00 I . 00 

)1'2 
Rb = 3 J dx x

2 
Gkin(x) dx J dx Gkin(x) 

0 0 

that has an explicit dependence on A and ~v: 

( ) -1/2 -1 Rb = 0.80305 •. ~ A ~v 

The length of the entire particle (6-1) must be computed numerically. 

(6-2) 

(6-3) 
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A comparison of the gluon half-length (analog of radius) and the 

particle half-length is shown in Fig. (6-1) for constant mass M=l~ and 

different values of quark-gluon coupling constant. A small admixture 

of quarks makes the system shrink whereas for larger g the quarks push 

th~ gluon bag apart. 

• 
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7. THE FORM FACTOR 

A measure of the shape of a particle is the form factor, that can 

be obtained from scattering experiments. We consider the formfactor to 

be the Fourier transform of the matter distribution. In electron scat-

tering the formfactor is the Fourier-transform of the electrical charge 

distribution. Because the energy or matter distribution is symmetric 

about the origin the form factor is a real function of momentum trans-

fer q. The Fourier transform reduces to a cosinus transform: 

00 

F ( q ) = f d X TOO (X ) e i q X = 
-oo 

(7-1) 

This function can be calculated in a closed form. Introducing the 

function [15, Eq. (3.985(1)], [16, Eq. 6.1.25] 

()() 

coco(a;o;b) ·j( dx cos (ax) cosh-0(bx) 
(7-2) 

0 -1 

= 2~-2 r2 (!) ;[1 + (tt,} ] 
bf( o) 2 n=O (% + 4 

we obtain the form factor: 

F(q) = t A~~ coco(q;-4;1(3A/2 ~v) 
(7-3) 

+ 191 sign E ~v 2N
2 coco(q;-~ lgl; (3;ii. ~v) 
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The square of the form factor for the configuration in Fig. (5-l) is 

presented on logarithmic scale in Fig. (7-1) as a function of Rq. 
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8. DERIVATION OF A PHENOMENOLOGICAL BAG MASS FORMULA 

In the MIT bag model [17] the mass of a particle is given by the 

volume energy and correction terms due to quarks : 

a Z 
M = 43 B R3 

+ ~ - ~ + fine structure 

where R is the radius of the spherical bag, B the volume energy den­

sity. ac and z0 are related to the motion of fermions inside the 

bag [18]. 

This formula and the theory behind it explains well the mass-

spectrum of single hadrons. There is a natural difficulty associated 

with this geometrical model when it comes to describe the interaction 

between two hadrons. 

(8-1) 

On the other haod every field.theory should derive a mass formula 

similar to the above (8-1), in terms of mean values of extension of the 

particle. 

The problem is to express the mass of the particle: 

M = p{ ~~ - g ~v (8-2) 

in terms of the size of the system and a bag constant. The constant y, 

that is substracted from the potential in the Lagrangian (2-1}, is a 

natural candidate for the bag constant. 
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We define for our model a bag-constant: 

2 4 B = -y = J A ~v (8-3) 

such that B is positive. Only the gluon distribution length is ex­

plicitly useable as a radius. This is very much in the spirit of the 

bag models where the bag is determined by the gluons. 

From Eqs. (6-3} and (8-3} we obtain : 

and BRb = t 0.80305 1
1/2 ~~ (8-4) 

Therefore the mass formula (8-2) is cast into the form: 

M = 1.1438 B(2Rb) - 0.80305 g A-112 1 
Rb 

This formula of the energy in terms of the radius and the constant 

(8-5) 

B = -y is the analog in the one dimensional case of the phenomenologi-

cal bag formula. 

In one space dimension there is no distinction between volume and 

linear size or radius. 

There is however an important difference between the formula (8-1) 

a~d (8-5). The sign of the energy of the energy of the quarks is nega­

tive in our case but is positive in the MIT-model Eq. (8-1). This 

would make it impossible to find the physical value for Rb from the 

minimum of M: aM/aRb = 0, because there is no real solution in Rb 
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to this equation. However, this pr~ceedure is not necessary because 

Rb in this field theoretical model is calculated as a expectation 

value, whereas in the MIT-model Rb is a geometrical parameter that in the 

end is calculated from aM/aRb = 0. 
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9. RESONANCES AND THE STABILITY OF THE GROUND STATE 

Excited states of the gluon field are given by fluctuations in time 

about the classical fields ~ 1 and ~2 • 

Because of the nonlinear selfinteraction of the gluon field one can 

make progress only by choosing a convenient expansion of the fields and 

calculate the field correction perturbatively. 

The expansion of the fields in our case is obtained by adding a 

perturbation P(t,x) [19], to the classical fields ~1 , ~2 : 

and 

- . 1 
~2 (t,x) = ~2 (x) --- P(t,x) 
. ~ 

such that the new fields ~ 1 and ~2 satisfy the same algebraic 

relation (3~7) as the classical fields ~ 1 , ~2 : 

(9-1) 

{9-2) 

(9-3) 

that has the property to decouple the gluon fi~ld equations. The ex­

pansion of the fields (9-1) and {9-2) may be viewed as an expansion of 

the X function (3-6) alone by writing the fields in the form (3-5) 

{9-4) 
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- V3 -
~2 (t,x) = ~ ~v(1 - x(t,x)) (9-5) 

where 

- 4 1 '"' x(t,x) = x(x) + 3 ~v P(t,x) = x(x) + ~(t,x) • (9-6) 

With the ansatz (9-4) and (9-5) the coupled gluon equations (3-1a,b} 

reduce to a single equation for i [12]-: 

2 2 - 2 -3 -
(a 0 - at) X = -2a (X - x) (9-7} 

2 2 ~ where 2a = 3"A~v· The equation forL..(t,x) that fo-llows from 

(9-7} is: 

(9-8) 

We solve for L: in a linear approximation by neglectingL2 andL3 in 

(9-8}. The linearized equation might be considered as well to be the 

equation for P(t,x): 

(9-9) 

(the proportionality factor betweenL and P drops out). The ansatz (A 

is a constant): 
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P(t,x) = A cos(Et) ~(x) (9-10) 

leaves the gluon fields real and reduces (9-9) to a second order dif-

ferential equation in the space coordinate: 

d2 2 2 2 2 ---2 ~(x) + [(E + 2a ) - 6a tanh a (x - x
0

)] ~(x) = 0 • 
dx 

(9-11) 

The general method of integration of this equation is given in Ref. 

[20]. 

There are two sets of solutions that are finite at infinity: 

1. E( 1) =V3 a P( 1) (t,x) = Acos(Et) sech(ax) tanh(ax) (9-12) 

and 

(9-13) 

Both solutio~~ are c~nsistent with the approximation that leads to the 

linearized equation if the maximal values of (9-12) p( 1) = A/2; max 
~( 1 ) = 2A~-1 /3 and of (9-13) p( 2) =A ~( 2 ) = max v .. max ' l..Jmax 

4A~~1 /3 satisfy the inequality ~>>~2 >>~3 • This works 

best when ~v >> {4/l)A. 

The excitation energy can be expressed in two ways. First as the 

positive eigenvalues of the field perturbation P(t,x). Then the masses 

of the resonances are: 
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{k = i,2) (9-14) 

with E(1) = {3 a and E(2) = 2a (a={¥-· rf1v). 

And second the excitation energy can be expressed as a perturbation 

·of the field energy. In this case the mass of the resonances is: 

T oo 

M*(k) = M + f f dt J dxoT6~) (t,x) (k = 1,2) 
0 . -oo 

where T = 2u/E(k) is the period of time oscillations. The energy 

density of the perturbation up to second order in P(t,x) is: 

The field energy (9-16) contains the amplitude A, that cannot be de­

termined from Eq. (9-11) because of the linear approximation taken. 

Demanding that both sources of information on the energy of the reso­

nance give the same answer we can calculate A. The knowledge of A is 

of value only in the case when the interaction of the resonance with 

other particles is investigated. 

There is no change in the quark energy due to the perturbation of 

the gluon field because the quark-gluon interaction energy: 

(9-15) 

(9-16) 
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is the same as for the unperturbed fields. 

The correction to the energy density (9-15) is an even function in 

x for the first state of excitation (9-12) but is a mixture of even and 

odd functions for the second excitation (9-13). The dipole moment of 

the first resonance therefore vanishes. The second resonance has a 

time dependent dipole moment equal to: 

(2) 1 J oo (2) 2(1 - r/Jv) 
D (t) = M* dx x 6T00 (t,x) = A cos(Et) M* 

-oo 

M* is the mass of the resonance. 

The excitation energy of the gluon field is larger than the inverse 

size of the gluon-bag Rb Eq. (6-3). This is an expression of an uni­

versal law of quantum theory [21]. 

The existence of perturbations of finite energy of the classical 

soliton solutions is a proof of their stability. An example of an 

energy spectrum is shown in Fig. 9-1. 

( 9-17) 

(9-18) 
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10. COLORED STATES AND GLUEBALLS 

We can think of removing one quark. The energy of this process may 

depend on the way the quark is removed. Only if the energy (or the 

action) becomes infinite for any conceivable process of removing one 

quark we have perfect confinement of the quarks [22]. 

The action becomes infinite if quarks are removed as plane waves. 

Hence the removal of a quark that will continue to exist as a free 

quark is forbidden Eq. (5-15). 

Models that use a single scalar gluon field~ with the selfinter­

action (~ 2 - f 2)2 and a single quark ~coupled in a Yukawa form 

'-~~¢ escape the above argument because despite the constant quark cur-

rent ~~ = canst, the action is zero 

S • const f~~ dx tanh (x - x
0

) = 0. 

In such models [23] free quarks are predicted to exist. 

Returning to our model there is, however, a possibility to remove 

one quark from a particle and attach the same quark as a bound state to 

another particle. This process violates the theorem Eq. (4-3) and thus 

costs energy. However, the energy required in finite and the action 

associated with it remains finit~ too. 

Colored States 

To calculate the energy of a particle from which one quark has been 

removed we set ~1 or $2 zero, while preserving the original wave­

function of the quark that stays behind. 
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. ' . . 
In both cases the second current disappears: 

J2(x) = 0 ( 10-1) 

The interaction energy in the two possible cases of the quarks is 

proportional to: 

1. lj!1 = 0 

2. lj!2 = 0 

With the original values of the fields 

therefore 

~colored · 1 .neutral 
J1 = 2 J1 

(10-2) 

(10~3) 

(10-4) 

(10-5) 

It makes no difference which quark is removed, the change in mass will 

be the same. The integrated energy of the quarks is 

TQg 1 ored = g2N2 (s i gnE)(s igng) sin i foo ~xe~2H( x l { ~ v (1 + 3 tanhax) 

(10-6) 

The hyperbolic tangent does not contribute to the integral being an odd 

function: 
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rgglored • g2N2(sign E)(sign g)sin i i ~v Jroo~xe-2H(x) 

1 . . 1 · .neutral !
00 

= g l -v(s1gn E) (~1gn g) I -oodx J 1 

· The integral of j 1 is one, this is the normalization condition 

(Chapter 6). Thus: 

( 10-7) 

(10-8) 

(10-9) 

The mass of a colored system with either quarks ~1 or ~2 removed is 

(10-10) 

where M is the mass of the complete neutral system Eq. (5-10). 

The mass of the co 1 ored' system is therefore 1 arger than the ground 

state. 

Gluebal.ls 

Removing finally two quarks j 1 = 0, j 2 = 0 leaves a glueball 

behind,with the mass: 

The mass spectrum is shown in Fig. 9-1. 

( 10-11) 
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The size of the colored state does not differ much from the size 

Rb of the glueball shown in Fig. 6-1. 

Th~ colored state has an ~symmetric mass distribution, i.e., a mass 

dipole. 

The process discussed in this chapter becomes possible if two 

neighbor particles exchange one or two quarks. The exchange has to be 

made in accordance with the Pauli exclusion principle. Then the energy 

of a three quark ~ystem is the same as that of a single quark system 

given by Eq. (10-10). Once the quarks are exchanged the two colored 

particles or the two glueballs attract each other violently at short 

distances, but cease to interact at large distances. If enough energy 

is spend to exchange the quarks and afterwards to overcome the attrac­

tion of the particles it is possible to separate colored states at 

artibrary distance from each other with a.finite amount of energy. 

'This result has validity only in the framework of this model. Calcu­

lations will be presented in the second part of this work. 
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11. CONCLUSION 

In this paper we study a model of gluons and quarks with the inter­

nal discrete symmetry in color space Z(3)--the cyclic group of order 

three. The gluons represented by scalar classical fields have zero 

spin. The selfinteraction of the gluons is polynomial, with a quartic 

and cubic term, that suggested the name of polynomial chromodynamics. 

The quarks are classical spinor fields with spin 1/2. 

There are only two colors present in the model, e.g., red and blue. 

However, this is enough to display the essential features of the color 

interaction in the same way as the minimal spin-1/2 or isospin-1/2 sys­

tems display all characteristics of systems with larger spin or isospin. 

The effect of two colors is that mesons and baryons have the same 

structure. The mesons are made of a quark and an antiquark whereas the 

baryons are made out of two quarks with the two colors red and blue. 

Colors can add up to zero either by combining colors with their anti-, 

colors or by saturation attained by mixing all colors together. The 

form of the Lagrangian written in matrix form Eq. (2-8) seems especial­

ly suited for generalization to three colors. 

Initially there are five parameters in the model A, v, p, y and g. 

The four parameters A,,v, p andy in the Lagrangian determine the self­

interaction of the gluous. In order to obtain a solvable system they 

have to be related to each other, and only two of them can finally 

assume arbitrary values. Instead of using two independent coupling 

constants we choose A and the vacuum field ~v as the free parameters. 
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The quarks are massless and the strength of their interaction with 

the gluons is given by the coupling constant g. 

The model contains, therefore, three free parameters A, 0v' and 

g. All three parameters appear explicitely in different physical quan­

tities like the mass of the composite system in the ground state M Eq. 

(5-10) the size of the gluon-bag Rb Eq. (6-3) the masses of the re­

sonances M*, M** (Eqs. (9-14)) etc. Therefore, we can substitute for 

the parameters three physical significant quantities in any reasonable 

combination like M, M*, Rb etc. 

In 1 + 1 dimensions A is measured in units of mass squared and will 

set the scale for all measurable quantities. 

Prior to any calculation we obtain from the interactibn imposed by 

the discrete internal symmetry group theorem (Eq. (4-3)) that holds in 

two or four dimensions, and states that the two quark fields ~1 and 

~2 that solve the field equation do no separate. This is the basis 

for confinement at low energies. Of course in a classical field theory 

one can violate this theorem and the field equations at the expense of 

energy. 

The field equations are solvable in a closed form in 1 + 1 dimen­

sions when the gluons are subjected only to their selfinteraction and 

not influenced by the quarks, but the motion of the quarks is deter­

mined by the gluons. 
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Whereas in 1 + 1 dimensions this change, (Eqs. (2-17)~(3-1)) in the 

field equations is useful in .order to solve the resulting field equa­

tions, because there exist stable soliton solutions, it is well known 

that in four dimensions it is precisely this trick that is not going to 

work as there are no spherical symmetric soliton solutions [24] of the 

modified field equations (Eq. (3-1) ),. · ln four dimensions the feedback 

of the quarks and gluons cannot and should not be neglected. 

'We take advantage of this situation in lower dimensions where the 

calculations are easy and transparent to develop and explore the con­

cepts associated with ~uark-gluon physics. 

The ground state is a bound system of quarks and gluons. The gluon 

field is more intens in the vacuum than inside a composite particle. 

The color exchange is proportional to the gluon field intensity. This 

means that the quarks shy away from the vacuum where intense color ex­

change would take place and prefer energetically to localize in the 

area of less intense color exchange, i.e., the center of the soliton 

configuration of the gluon field. 

The mass (Eq. (5-10)) of the ground state when expressed in terms 

of the size (Eq. (6-3)) of the particle (the size is calculated as an 

expectation value) resembles the mass formula of the phenomenological 

bag model (Eq. (8-5)) with the two terms of volume energy and quark 

energy. 

Time dependent oscillations of the gluon field, similar to vibra­

tions of the gluon bag give the resonance states (Eqs. (9-12) and 

(9-13)). 
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Next, we disregard theorem (4-3) and remove one quark. This pro­

cess requires a finite amount of energy. The mass of the state defi­

cient in one quark increases. 

Finally, removing the last quark leaves a glueball behind that is 

even heavier. If the increase frt mass due to quark removal is measured 

in percent then the remdval of the first quark contributes 87.5% 

{7/8 parts) of the total jump in mass from the ground state to 

glueball, and the removal of the second quark contributes only the 

remaining 12.5% (1/8 parts) ·(Eq. (9-14)). 

The size of the colored states and glueballs relative to the ground 

state depends on the value of the coupling constant g between quarks 

and gluons. This can be read off Fig~ (6-1}~ There is a g
0 

such 

that if 0 < g < g
0 

the withdraw of quar-ks makes the system increase 

in size ~nd the geometrical scattering cross section would be larger. 

If g > g
0 

the system will shrink in size and the scattering eros~ 

section will be smaller: for colored states and glueballs than for 

complete configurations. The value of g
0 

depends on mass of the 

ground state M and A. 

In conclusion this very simple model seems to contain the essen­

tials of quark-gluon physics and gives a variety of single composite 

particle configuration. 
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FIGURE CAPTIONS 

Fig. (2-1) Equipotential lines V(01,02) =canst. of the potential 

part of the Lagrangian. The topology displays the symmetry 

under rotation by multiples of 120° in the field space. 

There are three minima corresponding to the three vacuum 

states of the gluon field. The parameters are A = 1, 

0v = 3. 

Fig. (3-1) The gluon fields 01 and 02 (Eq. (3-5)), with the center 

of the soliton at x = 0. The parameters are A= 1, 0v = 

2.6717 • • • At x = + oo the fields occupy the vacuum state · 

(0v,O) at x = -oothe vacuum state (-1/2 0v, /3/2 0v). 

The tunneling from one state to the other takes place over 

the saddle point between the two vacuum states (Fig. (2-1)). 

Fig~ (5-1) The internal energy distribution of a composite particle 

made of gluons and quarks (Eq. (5-9)). The upper curve (the 

gluon field energy) is the first term in Eq. (5-9) and the 

lower curve (the quark-gluon interaction energy) is the 

second term in Eq. (5-9). The heavy curve with a dip in the 

center is the sum of both energies. The quark contribution 

to the energy is negative and thus lowers the energy of a 

glueball and explains why quarks prefer to enter ·into a 

bound state with gluons. The mass of the particle (in­

tegrated field energy) is M = 10--obtained with the follow­

ing combination of parameters A = 1, 0v ~ 2.6717, 

g = 5.0. 
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Fig. (5-2) A sequence of energy (matter) distributions (Eq. (5-9)) of 

composite particles of constant mass M = 10, A = 1, as a 

function of the quark-gluon coupling constant,g. 

Fig. (6-1) The size of the composite particle of constant mass M = 10, 

A= 1, as a function of the quark-gluon coupling constant 

g. The monotonically descending line is the size of the. 

gluon-bag (or glueball) that is obtained if at each point 

the quarks would be removed from the composite particle. 

The mass of the gluon-bag is therefore increasing from the 

left to the right. 

Fig. (7-1) The square of the formfactor as a function Rq (R is the size 

of the particle, q the momentum transfer) of a particle of 

mass M = 10, A = 1, ~v = 2.6717, g = 5. 

Fig. (9-1) The mass spectrum of a composite particle. The mass of the 

ground state is chosen to be ten (M = 10), to give an easy 

reference point for the rest of the spectrum. The coupling 

constants are A= 1, g = 5 and the value of the vacuum field 

is ~v = 2.6717. To the left are the excitations of the 

particle with intact structural composition~ to the right 

the excitations obtained by removing the quarks. The mass 

is measured in units of A• 
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